262 research outputs found

    Broad-band X-ray analysis of local mid-infrared selected Compton-thick AGN candidates

    Get PDF
    The estimate of the number and space density of obscured AGN over cosmic time still represents an open issue. While the obscured AGN population is a key ingredient of the X-ray background synthesis models and is needed to reproduce its shape, a complete census of obscured AGN is still missing. Here we test the selection of obscured sources among the local 12-micron sample of Seyfert galaxies. Our selection is based on a difference up to three orders of magnitude in the ratio between the AGN bolometric luminosity, derived from the spectral energy distribution (SED) decomposition, and the same quantity obtained by the published XMM-Newton 2-10 keV luminosity. The selected sources are UGC05101, NGC1194 and NGC3079 for which the available X-ray wide bandpass, from Chandra and XMM-Newton plus NuSTAR data, extending to energies up to ~30-45 keV, allows us an accurate determination of the column density, and hence of the true intrinsic power. The newly derived NH values clearly indicate heavy obscuration (about 1.2, 2.1 and 2.4 x10^{24} cm-2 for UGC05101, NGC1194 and NGC3079, respectively) and are consistent with the prominent silicate absorption feature observed in the Spitzer-IRS spectra of these sources (at 9.7 micron rest frame). We finally checked that the resulting X-ray luminosities in the 2-10 keV band are in good agreement with those derived from the mid-IR band through empirical L_MIR-L_X relations.Comment: 14 pages, 6 figures, accepted for publication in MNRA

    Compton Thick AGN in the 70 Month Swift-BAT All-Sky Hard X-ray Survey: a Bayesian approach

    Get PDF
    The 70-month Swift/BAT catalogue provides a sensitive view of the extragalactic X-ray sky at hard energies (>10 keV) containing about 800 Active Galactic Nuclei. We explore its content in heavily obscured, Compton-thick AGN by combining the BAT (14-195 keV) with the lower energy XRT (0.3-10 keV) data. We apply a Bayesian methodology using Markov chains to estimate the exact probability distribution of the column density for each source. We find 53 possible Compton-thick sources (with probability 3 to 100%) translating to a ~7% fraction of the AGN in our sample. We derive the first parametric luminosity function of Compton-thick AGN. The unabsorbed luminosity function can be represented by a double power-law with a break at L2×1042L_{\star} 2 \times 10^{42} ergs s1\rm ergs~s^{-1} in the 20-40 keV band.Comment: 13 pages, 9 figure

    NuSTAR reveals the extreme properties of the super-Eddington accreting supermassive black hole in PG 1247+267

    Get PDF
    PG1247+267 is one of the most luminous known quasars at z ~ 2 and is a strongly super-Eddington accreting supermassive black hole (SMBH) candidate. We obtained NuSTAR data of this intriguing source in December 2014 with the aim of studying its high-energy emission, leveraging the broad band covered by the new NuSTAR and the archival XMM-Newton data. Several measurements are in agreement with the super-Eddington scenario for PG1247+267: the soft power law (Γ = 2.3 ± 0.1); the weak ionized Fe emission line; and a hint of the presence of outflowing ionized gas surrounding the SMBH. The presence of an extreme reflection component is instead at odds with the high accretion rate proposed for this quasar. This can be explained with three different scenarios; all of them are in good agreement with the existing data, but imply very different conclusions: i) a variable primary power law observed in a low state, superimposed on a reflection component echoing a past, higher flux state; ii) a power law continuum obscured by an ionized, Compton thick, partial covering absorber; and iii) a relativistic disk reflector in a lamp-post geometry, with low coronal height and high BH spin. The first model is able to explain the high reflection component in terms of variability. The second does not require any reflection to reproduce the hard emission, while a rather low high-energy cutoff of ~100 keV is detected for the first time in such a high redshift source. The third model require a face-on geometry, which may affect the SMBH mass and Eddington ratio measurements. Deeper X-ray broad-band data are required in order to distinguish between these possibilities

    The Xmm-Newton Spectrum of a Candidate Recoiling Supermassive Black Hole: An Elusive Inverted P-Cygni Profile

    Get PDF
    We present a detailed spectral analysis of new XMM-Newton data of the source CXOC J100043.1+020637, also known as CID-42, detected in the COSMOS survey at z = 0.359. Previous works suggested that CID-42 is a candidate recoiling supermassive black hole (SMBH) showing also an inverted P-Cygni profile in the X-ray spectra at ~6 keV (rest) with an iron emission line plus a redshifted absorption line (detected at 3σ in previous XMM-Newton and Chandra observations). Detailed analysis of the absorption line suggested the presence of ionized material flowing into the black hole at high velocity. In the new long XMM-Newton observation, while the overall spectral shape remains constant, the continuum 2-10 keV flux decrease of ~20% with respect to previous observation and the absorption line is undetected. The upper limit on the intensity of the absorption line is EW \u3c 162 eV. Extensive Monte Carlo simulations show that the nondetection of the line is solely due to variation in the properties of the inflowing material, in agreement with the transient nature of these features, and that the intensity of the line is lower than the previously measured with a probability of 98.8%. In the scenario of CID-42 as a recoiling SMBH, the absorption line can be interpreted as being due to an inflow of gas with variable density that is located in the proximity of the SMBH and recoiling with it. New monitoring observations will be requested to further characterize this line

    Searching for highly obscured AGN in the XMM-Newton serendipitous source catalog

    Full text link
    The majority of active galactic nuclei (AGN) are obscured by large amounts of absorbing material that makes them invisible at many wavelengths. X-rays, given their penetrating power, provide the most secure way for finding these AGN. The XMM-Newton serendipitous source catalog is the largest catalog of X-ray sources ever produced; it contains about half a million detections. These sources are mostly AGN. We have derived X-ray spectral fits for very many 3XMM-DR4 sources (\gtrsim 114 000 observations, corresponding to \sim 77 000 unique sources), which contain more than 50 source photons per detector. Here, we use a subsample of \simeq 1000 AGN in the footprint of the SDSS area (covering 120 deg2^2) with available spectroscopic redshifts. We searched for highly obscured AGN by applying an automated selection technique based on X-ray spectral analysis that is capable of efficiently selecting AGN. The selection is based on the presence of either a) flat rest-frame spectra; b) flat observed spectra; c) an absorption turnover, indicative of a high rest-frame column density; or d) an Fe Kα\alpha line with an equivalent width > 500 eV. We found 81 highly obscured candidate sources. Subsequent detailed manual spectral fits revealed that 28 of them are heavily absorbed by column densities higher than 1023^{23} cm2^{-2}. Of these 28 AGN, 15 are candidate Compton-thick AGN on the basis of either a high column density, consistent within the 90% confidence level with NH_{\rm H} >>1024^{24} cm2^{-2}, or a large equivalent width (>500 eV) of the Fe Kα\alpha line. Another six are associated with near-Compton-thick AGN with column densities of \sim 5×\times1023^{23} cm2^{-2}. A combination of selection criteria a) and c) for low-quality spectra, and a) and d) for medium- to high-quality spectra, pinpoint highly absorbed AGN with an efficiency of 80%.Comment: 18 pages, 10 figures, accepted for publication in A&

    NuSTAR reveals that the heavily obscured nucleus of NGC 2785 was the contaminant of IRAS 09104+4109 in the BeppoSAX/PDS hard X-rays

    Get PDF
    The search for heavily obscured active galactic nuclei (AGNs) has been revitalized in the last five years by NuSTAR, which has provided a good census and spectral characterization of a population of such objects, mostly at low redshift, thanks to its enhanced sensitivity above 10 keV compared to previous X-ray facilities, and its hard X-ray imaging capabilities. We aim at demonstrating how NGC2785, a local (z=0.009) star-forming galaxy, is responsible, in virtue of its heavily obscured active nucleus, for significant contamination in the non-imaging BeppoSAX/PDS data of the relatively nearby (~17 arcmin) quasar IRAS 09104+4109 (z=0.44), which was originally mis-classified as Compton thick. We analyzed ~71 ks NuSTAR data of NGC2785 using the MYTorus model and provided a physical description of the X-ray properties of the source for the first time. We found that NGC2785 hosts a heavily obscured (NH~3*10^{24} cm^{-2}) nucleus. The intrinsic X-ray luminosity of the source, once corrected for the measured obscuration (L(2-10 keV)~10^{42} erg/s), is consistent within a factor of a few with predictions based on the source mid-infrared flux using widely adopted correlations from the literature. Based on NuSTAR data and previous indications from the Neil Gehrels Swift Observatory (BAT instrument), we confirm that NGC2785, because of its hard X-ray emission and spectral shape, was responsible for at least one third of the 20-100 keV emission observed using the PDS instrument onboard BeppoSAX, originally completely associated with IRAS 09104+4109. Such emission led to the erroneous classification of this source as a Compton-thick quasar, while it is now recognized as Compton thin.Comment: Six pages, 3 figures, A&A, in pres

    Type 2 Quasars at the heart of dust-obscured galaxies (DOGs) at high z

    Get PDF
    Dust‐obscured galaxies (DOGs) represent a recently‐discovered, intriguing class of mid‐IR luminous sources at high redshifts. Evidence is mounting that DOGs (selected on the basis of extreme optical/mid‐IR color cut and high mid‐IR flux level) may represent systems caught in the process of host galaxy formation and intense SMBH growth. Here we report the results of an X‐ray spectroscopic survey aimed at studying the X‐ray properties of these sources and establishing the fraction of Type 2 quasars among them
    corecore